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Abstract. We have developed a semiclassical theory of short periodic orbits to obtain all the
quantum information of a bounded chaotic Hamiltonian system. If T1 is the period of the shortest
periodic orbit, T2 the period of the next one and so on, the number Npo of periodic orbits required
in the calculation is such that T1 + · · · + TNpo � TH , with TH the Heisenberg time. As a result
Npo � hTH / ln(hTH ), where h is the topological entropy. For methods related to the trace formula
Npo � exp(hTH )/(hTH ).

The semiclassical evaluation of energy spectra in classically chaotic Hamiltonian systems
was started in 1971 with Gutzwiller’s trace formula [1]. From then on great effort has been
dedicated to extend the formalism to wavefunctions [2] and to use resummation techniques
to improve the convergence properties of the trace formulae [3, 4]. However, a common
drawback in all of these approaches is the requirement of an enormous number of periodic
orbits (POs), restricting explicit calculations to very special systems; e.g. systems where the
classical mechanics is handled by a symbolic dynamics. Moreover, these approaches miss a
simple understanding of wave mechanics in terms of classical objects.

Recently, it was shown that chaotic eigenfunctions can be described in terms of a small
number of localized structures living on short periodic orbits [5]. Having this in mind, we
present a simple semiclassical formalism to obtain quantum mechanics from a very small
number of short POs. In order to do so, we will construct resonances (or scar functions)† of
short POs explicitly, evaluating the interaction between them.

Let γ be an unstable PO isolated on each energy surface. We introduce a curvilinear
coordinate system choosing the x-axis along the trajectory and the y-axis perpendicular to it
at x (to simplify the exposition we take only one transverse direction). On the PO y = 0.
Classical mechanics in a neighbourhood of the orbit is governed by a transverse symplectic
matrix M(x) of elements mij (x) (i, j = 1, 2), which describes the linearized motion on the
energy surface. Then, a point with transverse coordinates (y, py) at x = 0 evolves according
to the following rule:

(
y(x)

py(x)

)
=

(
m11(x) m12(x)

m21(x) m22(x)

) (
y

py

)
.

† Recently [6], a semiclassical elementary construction on the boundary of billiards was presented, which associates
a function to each periodic orbit. These functions were called scar functions. In this work we prefer to use the name
resonances because the constructive method only depends on the orbit and its neighbourhood and can also be applied
to open systems.
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We have selected the origin x = 0 such that m11(L) = m22(L), with L the length of γ †. There
are at least 2ν points on the orbit satisfying that condition, with ν the Maslov index. With this
choice the monodromy matrix M(L) acquires the form,

M(L) = (−1)ν
(

cosh(λL) sinh(λL)/ tan(ϕ)
sinh(λL) tan(ϕ) cosh(λL)

)

where λ is the Lyapunov exponent in units of [length−1] and tan(ϕ) (�=0) in units of
[momentum/length] defines the slope of the unstable manifold in the plane y–py (where
the slope of the stable manifold is − tan(ϕ)).

In general, it is impossible to compare vectors living in the plane y–py because the axes
have different units. However, when the directions are symmetrical with respect to the axes it
is only necessary to compare one component. Then, we change to new axes ξu and ξs , on the
unstable and stable manifolds, respectively, such that their projections on each axis are equal
in absolute value. The symplectic matrix B transforming coordinates from the new axes into
the old ones is

B = (ξu ξs) = (1/
√

2)

(
1/α −s/α

sα α

)

with α = √| tan(ϕ)| and s = sign(ϕ). Observe that B−1M(L)B = (−1)ν exp(λLD), with D

a diagonal matrix of elements d11 = 1 and d22 = −1.
Now, we decompose M(x) into a periodic matrix F(x) describing the evolution of

the manifolds, and a matrix (depending in a simple way on x) describing the exponential
contraction–dilation along the manifolds,

M(x) = F(x) exp(xλK) ≡ F(x)B exp(xλD)B−1 (1)

with K ≡ BDB−1 (k11 = k22 = 0, k21 = 1/k12 = tan(ϕ)). Equation (1) defines F(x) in
terms of M(x) and we can see that F(L) = (−1)ν1. Floquet’s theorem [7] affirms that the
decomposition given in (1) can also be obtained for systems with many transverse directions.

Now, it is possible to construct a family of resonances associated with γ . We adapt well
known semiclassical techniques to obtain eigenfunctions concentrated in the neighbourhood
of stable POs [8]. In the x-direction we consider the typical solution of a one-dimensional
motion, and in the transverse one we use a wavepacket which evolves according to F(x),

ψγ (x, y) = exp{i[S(x) + y2 #(x)/2]/h̄ − iφ(x)/2}√
T ẋ [π(h̄/J )|Q(x)|2]1/4

(2)

where S(x) = ∫ x

0 mẋ dx is the action, T the period of γ and J the unit area in the plane y–py .
#(x) ≡ P(x)/Q(x), with Q(x) (P(x)) the y (py) component of the complex vector‡.

ξu(x) + iξs(x) ≡ F(x)(ξu + iξs) = M(x)B

(
e−xλ

i exλ

)
. (3)

Equation (3) shows that it is not necessary to evaluate explicitly F(x). On the other hand, the
area-preserving property of F(x) guarantees the following normalization condition:

Q∗(x) P (x) − Q(x) P ∗(x) = 2iξu(x) ∧ ξs(x) = 2iJ. (4)

† The monodromy matrix starting at x = x0 is related to M(x) in a simple way: Mx0 (L) = M(x0)M(L)M(x0)
−1.

So, it is easy to find the required condition.
‡ The initial complex vector ξu + iξs defines at x = 0 a transverse wavepacket with the following two properties:
(a) maximum overlap with the wavepacket obtained from it by a one-period linealized evolution, and (b) maximum
concentration around the orbit minimizing non-linear contributions to the one-period exact evolution.
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Then, Im [#(x)] = J/|Q(x)|2 > 0. Accordingly, ψγ is concentrated around γ and well
behaved in all regions except in the neighbourhood of a turning point (ẋ = 0)†. Finally, the
complex number Q(x) sweeps an angle φ(x) while evolving from 0 to x, and ν ≡ φ(L)/π

(this is the definition of the Maslov index).
ψγ is a continuous function atx = L if the accumulated phase around the orbit is an integral

multiple of 2π . This condition determines the admitted energies Eγ of the PO and corresponds
to the Bohr–Sommerfeld quantization rule: S(L)/h̄ − νπ/2 = 2nπ , where n = 0, 1, . . . , is
the number of excitations along γ .

We stress that the semiclassical construction of eigenfunctions in the neighbourhood of
stable orbits is similar to (2). The initial complex vector of equation (3) is replaced by the
eigenvector of the monodromy matrix (a complex vector in this case) satisfying (4). And
of course, the evolution of the vector is given by the transverse symplectic matrix without
modifications. Eigenvalues have an error O(h̄) and eigenfunctions an error O(

√
h̄). Moreover,

it is possible to improve the accuracy by including transverse excitations [8].
In our case, there is an essential error because the evolution in (3) is given by a modified

transverse matrix. In order to eliminate that error, we will first evaluate the action of the
semiclassical evolution operator for infinitesimal times over the resonance in the form

Ĥ ≡ ih̄ lim
δt→0

(Û(δt) − 1̂)/δt. (5)

The classical transverse evolution from x to x + δx is given by Mx(δx) = M(x + δx)M(x)−1.
So, Mx(δx) F (x) = F(x + δx) exp(δx λK). Observing that Kξu = ξu and Kξs = −ξs , it
results to first order in δx:

Mx(δx) ξu(x) � (1 + δx λ) ξu(x + δx)

Mx(δx) ξs(x) � (1 − δx λ) ξs(x + δx).
(6)

The above expressions actually show clearly the approximation involved in the construction.
We have forced the vector ξu (ξs) to evolve without dilation (contraction), while the right
evolution dilates (contracts) the vector with a rate specified by λ. Using (6) we see immediately
that the periodic functions Q(x) and P(x) are transformed into Q̃(x) = Q(x)+δxλQ(x)∗ and
P̃ (x) = P(x) + δxλP (x)∗, respectively. Then, the application of the semiclassical evolution
operator to the resonance gives

Û (δt = δx/ẋ)ψγ (x, y) = e−iEγ δt/h̄ψ̃γ (x, y) (7)

where ψ̃γ (x, y) has the expression given in (2) but using the transformed functions Q̃(x) and
P̃ (x). Finally, by replacing (7) into (5), we obtain

Ĥψγ (x, y) = gγ (x, y)ψγ (x, y) (8)

with gγ (x, y) = Eγ + ih̄ẋλ(y2J/h̄ − |Q(x)|2/2)/Q(x)2.
Then, the application of the semiclassical Hamiltonian operator to the resonance gives the

term Eγψγ as expected, plus a resonance of γ with two excitations in the transverse direction.
In fact, the two excitations are also expected because the right evolution produces a quadrupole-
like deformation of the wavepacket. Equation (8) is an extremely powerful tool: it is the key
to evaluating matrix elements between POs. As the operator Ĥ is not exactly Hermitian for
finite values of h̄, we define a symmetrized interaction between two POs γ and δ as follows
(in Dirac notation):

〈δ|Ĥ |γ 〉 ≡ (〈δ|Ĥγ 〉 + 〈γ |Ĥ δ〉∗)/2

〈δ|Ĥ 2|γ 〉 ≡ 〈Ĥ δ|Ĥγ 〉. (9)

† An expression in that region can be obtained by using the Airy function. There are no problems if the turning point
occurs in a hard-wall potential.
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Figure 1. (a) Coordinates (x, y) and (q, η) defining the neighbourhood of the periodic orbit γ and
the section ζ , respectively. (b) As in (a) but the section is given by a hard wall.

By using (8), we obtain explicitly the following diagonal matrix elements in the semiclassical
limit h̄ → 0,

(a) 〈γ |γ 〉 → 1

(b) Ēγ ≡ 〈γ |Ĥ |γ 〉/〈γ |γ 〉 → Eγ

(c) σ 2
γ ≡ 〈γ |Ĥ 2|γ 〉/〈γ |γ 〉 − Ē2

γ → (h̄λ)2 ẋ2/2

where ẋ2 = S(L)/mT is the time average of ẋ2 on the orbit. Expression (c) shows that the
width σγ of the resonance is asymptotically proportional to λ. Moreover, ρE σγ = O(h̄−1)†
shows that a unique orbit cannot support a stationary state in the semiclassical limit (to support
an eigenfunction the width of a resonance needs to satisfy ρE σ < 1). Of course, this result is
well known [9].

We should say something about symmetry. If the system can be time reversed it is
possible to show that ψ−γ (x, y) = ψγ (x, y)

∗ and Ĥψ−γ (x, y) = (Ĥψγ (x, y))
∗, where

−γ is the time reversal partner of γ . If the system also includes a spatial symmetry G, it
results that ψGγ (x, y) = Gψγ (x, y) and ĤψGγ (x, y) = GĤψγ (x, y). So, to obtain real
eigenfunctions inside a defined symmetry representation, we construct real resonances inside
the same representation by using group theory [10].

For low or medium energies we can evaluate matrix elements directly on the domain;
however, for high energies or to obtain explicit expressions in terms of classical quantities as h̄
goes to zero, it is preferable to work on a surface of section [11]. Let ζ be a differentiable curve
with the coordinate q along it, and η perpendicular to ζ at q (η = 0 on the curve). Suppose
γ crosses the section at qj (j = 1, . . . , m) with angles θj ; the corresponding positions on
γ are xj (see figure 1(a)). In a neighbourhood of radius O(

√
h̄) around the intersection

point j , the coordinates are related to order h̄ by x − xj = sin(θj ) (q − qj ) − cos(θj ) η and
y = cos(θj ) (q − qj ) + sin(θj ) η. Then, the restriction of ψγ to ζ , up to O(

√
h̄), is a sum of

wavepackets in one dimension with tangential momentum pj = mẋj sin(θj ),

ϕγ (q) ≡ ψγ (x, y)|ζ =
m∑

j=1

ψγj (q) (10)

where ψγj (q) = exp[ipj (q − qj )/h̄]ψγ [xj , cos(θj )(q − qj )].

† The energy density for two degrees of freedom is O(h̄−2).
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If the system is bounded by a hard wall and we take this wall as the surface of section, ψγ

is null there up to order
√
h̄†. In the neighbourhood of a bouncing point, ψγ consists of two

terms associated with the incoming and outgoing trajectory such that the combination satisfies
boundary conditions [8] (see figure 1(b)). Then, working with its normal derivative we define

ϕγ (q) ≡ − ih̄

2m

∂ψγ

∂η
(x, y)|ζ =

∑
j

ẋj cos(θj )ψγj (q). (11)

Moreover, Ĥϕγ (q) ≡ Ĥψγ (x, y)|ζ for (10) and Ĥϕγ (q) ≡ −(ih̄/2m)∂Ĥψγ /∂η(x, y)|ζ for
(11) are obtained to the leading order from (10) or (11) taking into account that

Ĥψγj (q) � gγ [xj , cos(θj )(q − qj )]ψγj (q). (12)

From now on ϕγ (q) (equation (10) or (11)) is the object representing the resonance on the
section. In order to describe an effective Hilbert space we define a norm on ζ ,

〈γ |γ 〉ζ ≡
∫
ζ

ϕγ (q)
∗ ϕγ (q) f (q) dq (13)

such that (a)–(c) are satisfied. Then, evaluating the leading term of the integral in (13), it
results in a classical criterion for specifying f (q)

T =
m∑

j=1

f (qj ) [ẋj cos(θj )]
∓1. (14)

The signs (−) and (+) correspond to (10) and (11), respectively. We select a smooth real
function f (q), oscillating as slowly as possible, which satisfies (14) for all short POs required
in the calculation. We note that the existence of f (q) is not guaranteed for all sections. A
hint to choose a section could be to make sure that the classical motion between consecutive
points (the map) is simple. For example, in billiards the motion between bounces with the
boundary is simple. On the other hand, eigenfunctions of billiards are reduced to the boundary
in terms of their normal derivatives, and the metric on the boundary is defined by setting
f (q) = 2(r · n̂)(q)/ẋ

2 [12], with n̂ the unit outgoing normal to the boundary and r the
position vector. Then, condition (14) (with sign (+)) reduces to

L =
m∑

j=1

2(r · n̂)(qj ) cos(θj )

and this nice identity is valid for any PO in any billiard; the demonstration is a simple
geometrical problem.

Now we can evaluate matrix elements over the section by using equations (10) or (11),
(12) and (13) (δ crosses the section at qk (k = 1, . . . , m′) with angles θk),

〈δ|Ôγ 〉ζ =
m,m′∑
j,k=1

Ajk

∫
ζ

ψδk (q)
∗Ôψγj (q) f (q) dq. (15)

Ajk = 1 for (10) and Ajk = ẋj ẋk cos(θj ) cos(θk) for (11). Defining zl = −i cos2(θl)#(xl)/2,
cl = ql + ipl/2zl and cjk = (zj cj + z∗

kc
∗
k )/(zj + z∗

k), the Gaussian integrals in (15) are given to
the leading order by∫

ζ

ψδk (q)
∗Ôψγj (q) f (q) dq = Djk f (cjk) exp[−Bjk/h̄ + i(αj − αk)]√

Tγ Tδ ẋj ẋk |Q(xj )Q(xk)| (zj + z∗
k)/J

.

† For billiards, the natural Poincaré surface of section is the boundary where ψγ is null (for Dirichlet conditions).
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Bjk = zj z
∗
k(cj − c∗

k )
2/(zj + z∗

k) + p2
j /4zj + p2

k/4z∗
k and αl = S(xl)/h̄ − φ(xl)/2. Moreover,

Djk = 1 for Ô = 1̂ and Djk = gγ [xj , cos(θj )(cjk − qj )] for Ô = Ĥ . Then, equation (15)
gives matrix elements in terms of classical quantities evaluated at the intersection points of the
orbits with the surface of section.

Finally, in order to obtain the eigenenergies and eigenfunctions of a bounded chaotic
Hamiltonian system in a given energy range, we proceed as follows. The family of resonances
of the shortest periodic orbit γ1, living in the required energy range is constructed. The density
of resonances associated with γ1 is ρ1 � T1/2πh̄, with T1 the period of γ1. Later, we do the
same with the next shortest orbit γ2, and so on (using only primitive orbits). The process stops
when the whole density of resonances equals the mean energy density ρE ,

TH ≡ 2πh̄ ρE � 2πh̄
Npo∑
k=1

ρk �
Npo∑
k=1

Tk. (16)

Equation (16) is actually impressive, it shows that the number of POs, Npo, required in the
calculation is very small and increases at most linearly with the Heisenberg time TH . More
precisely Npo � hTH/ ln(hTH ), where h is the topological entropy. For methods related to
the trace formula Npo � exp(hTH )/(hTH ).

Another interesting quantity is the number of resonances Nres contributing to one
eigenfunction. This number is proportional to the mean dispersion (see (c)) and to ρE

Nres � 2.6h̄ρE

√
〈λ2 ẋ2〉 (17)

with 〈 〉 the average over POs (using the factor 2.6 in (17), 99% of an eigenfunction is recovered
because erf(2.6/

√
2) � 0.99). Then, we select N resonances (N � Nres), consecutive in

energy, and call them #1, . . . , #N . Later, by solving the following generalized eigenvalue
problem:

N∑
j=1

(〈#k|Ĥ |#j 〉 − E〈#k|#j 〉)ξj = 0 ∀ k (18)

the eigenenergies E and eigenvectors ξ in the basis of resonances are given.
The main idea for the selection of resonances is to obtain a quasi-orthogonal basis of

highly localized (in energy) functions. The best way of satisfying quasi-orthogonality is to use
short periodic orbits. Now, for orbits with comparable periods we select the one with minimum
energy dispersion (see (c)). This analysis works for hard chaos systems (where all POs are
unstable and isolated). However, for systems with a fraction of regular motion, we need to
include the same fraction of regular functions in the basis. And, for systems with a continuous
family of neutral POs (e.g. the bouncing-ball family in the stadium billiard), a corresponding
fraction of phase-space localized functions is required.

In conclusion, we need to construct adequate functions in each classically different region
of phase space, with the number of them satisfying the required mean density (obtained
semiclassically) in each region. In a chaotic region, functions (we call them resonances) are
constructed with the shortest POs, and the number of them used to fill the Hilbert space is very
small as implied in equation (16). In order to obtain the interaction between two given short
POs it is possible to follow different strategies. Thinking at the classical level it is necessary to
use at least a PO living in the neighbourhood of the previous ones. Then, to obtain all matrix
elements, the period of the orbits required in the full calculation would be of the order of the
Heisenberg time, and no advantage is reached with respect to other approaches. However, in
this paper we showed that thinking at the quantum level, the interaction between short POs
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can be evaluated simply in terms of transverse excitations. In this way, all the information
required in the calculation is contained in short POs.

We would like to state some remarks.

(a) This theory has been applied successfully to the desymmetrized stadium billiard [13].
(b) The eigenvalues have an error O(h̄) and eigenfunctions an error O(

√
h̄).

(c) By the inclusion of transverse excitations in the construction of highly excited resonances
we have obtained wavefunctions [14] with the hyperbolic structure characteristic of
unstable periodic orbits [15].

(d) The basis of resonances is particularly useful for parametric-dependent systems. In fact,
this is the diabatic basis, and is very difficult to find in chaotic systems [5].

(e) Matrix elements between resonances from the same orbit (with different excitation
numbers) are zero in this approximation. On the other hand, we expect that only one
resonance from each family (associated with a single orbit), contributes to an individual
eigenstate.

(f) We should stress that, at present, it is not convenient to make a direct comparison
between the efficiency of the trace formulae and this approach, which finally requires
a diagonalization. Taking into account that the Hamiltonian in the resonance basis is
sparsly connected, we hope to obtain an expression in the same spirit as the trace formula
in the future.

Finally, within this formalism, we envisage a generic eigenfunction (in the extreme
semiclassical limit) to be constructed with resonances of a large number of POs which cover
the energy surface uniformly [16]. In this picture the intensities of the resonances would
be described by a Gaussian distribution (depending on the difference between the energies
of the corresponding resonances and the eigenfunction), plus fluctuations characteristic of
the particular eigenfunction. Of course, this is not a new idea, the Gaussian distribution of
intensities corresponds to the hypothesis by Berry [17] and Voros [18] of a uniform distribution
of the eigenfunction (its Wigner representation) on the energy surface. On the other hand, the
fluctuations are responsible for the scar phenomenon [19]. In this context, we would like
to emphasize that this approach is very convenient for the study of fluctuations through a
deep understanding of the degree of connection of the Hamiltonian matrix. At present we are
working in that direction.
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